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Nonlinear Coupling of Waves in a Plasma 
in a Strong Dissipation Limit 
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We study the nonlinear resonant coupling of two waves in a plasma for strong 
dissipation. We show that the corresponding system of differential equations has 
a saddle-focus fixed point and study its stable and unstable manifolds. The 
results we obtain suggest that the stochasticity which is numerically observed 
might be due to the existence of a spiral-type strange attractor. 
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1. INTRODUCTION 

1.1. Motivation 

Plasmas are nonequilibrium media. Collective modes originating in the 
Coulombian interaction may develop and lead to drastic changes in the 
state of the plasma. However, nonlinear couplings of such waves with dam- 
ped ones may saturate the instability at a level enabling the plasma to sur- 
vive in a state which differs little from the initial one. Depending on the 
physical situation the physicists are faced with either of the following mode 
couplings: 

(i) A large number of waves play a part in the system's evolution and 
interact. Statistical methods are then required to deal with the 
problem. 
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(ii) Only a few waves rule the plasma's evolution. Such a situation usually 
occurs in small systems where boundary conditions lead to strong 
mode selection. 

In the latter case, the system's evolution is given by a system of ordinary 
differential equations on waves amplitudes if we may neglect any nonlinear 
wave-particle interaction. Such an assumption is justified when the phase 
velocities are much larger than the thermal speed of electrons or when 
collisional processes are efficient enough to impede the evolution of the dis- 
tribution functions of particles. 

In this paper, we consider such a situation and study by pertubative 
methods in a strong dissipation limit the nonlinear resonant coupling of 
two waves with almost harmonic frequencies co and 2~o+~. we shall 
assume that the high-frequency wave is damped and the tow one is 
unstable, since in the opposite case the system's asymptotic state is just a 
lineary stable fixed point. 

Such a model pertains to drift-wave turbulence which is of fundamen- 
tal interest in the problem of fluctuations and anomalous transport in 
plasmas. The strong dissipation hypothesis is a relevant one as shown by 
Terry and Horton (n and Vyshkind and Rabinovich. {2) 

1.2. The Model  

The high-•quency wave has complex amplitude Au and linear growth 
rate 7~ > 0, the low-frequency one has amplitude A, and linear damping 
rate 75 < 0. If the amplitudes remain small and the evolution is slow, we 
may describe the coupling by the following set of equations which 
originates in a linearization of the dispersion relations{3): 

i \ dt 7.A~) = VA~ exp(icSt) 

{dA,  
i \ - - ~  -- 7sA,)  -- V A . A *  exp( - i6t) 

where ~ = c% - 2cos and V is a coupling parameter. Since no resonant wave 
particle interaction is considered, V is a real number and we set V = 1. The 
star denotes complex conjugaison. 

If we set 

A,  = a~ exp( iqSu), au e ~ + 

A , = a ,  exp(iqbJ, a , ~  + 
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we obtain the following equations on real amplitudes and the relative 
phase ~b: 

dau 2 
dt = Yua,, - a, sin 

~ s  
w ~  dt 7 ,G  + a , a .  sin ~b 

+ 2a 2 
dq~ - 6  ~ -  as cos ~b 
dt a .  

7~ + 7 , < 0  is the condition for the system to be dissipative. In the 
present paper, we shall study by pertubative methods the strong dissipation 
limit -G>>7, .  The energy-conserving case ?u = 7, = 0 could also lead to an 
interesting study (see Appendix 1). 

To study the strong dissipation case limit we introduce the following: 

(i) The dissipation parameter P = ( G - T u ) / G  Since l ~ < p < 2 ,  we shall 
often set p = 1 + e and e will be the perturbation parameter. 

(ii) The frequency mismatch parameter # = -3 /pz~  
(iii) The rescaled time: 

fo a ~ 2 1/2 u =  ( : + a , )  dt 

(iv) The new variables: 

x = sin ~b 

Y = 2 2 cos \ G , + a j  

-P?~, 
Z =  (a2. + a~) '/2 

Notice that z contains information on the total energy, x and y infor- 
mation on the relative phase and the distribution of energy between the 
two waves. 

Thus we obtain the following system with polynomial right-hand 
member: 
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dx (xz 1)(1-xR- y2)+ 2y(y-g--~) 
du 

du 

Notice that p appears only in the third equation (energy equation), and # 
in the first and second ones (phase equations). 

The natural phase space is the semi-infinite cylindrical volume 
0~<x2+y2<~l, 0~<z. 

In Section 2 we study the infinite dissipation limit e = 0. Section 3 
deals with the strong dissipation case 0 < e ~ 1. In Section 3.1 we prove the 
existence of an invariant compact set. In Section 3.2 we show that the 
system has a saddle focus fixed point. In Section 3.3 we study by per- 
tubation its stable manifold. In Section 3.4 a similar study is performed on 
the unstable manifold. 

Those results suggest that the fixed point could be homoclinic for cer- 
tain parameter values and that the stochasticity numerically observed (4"s) 
might be due to a spiral type strange attractor. 

The proofs require lengthy calculations. An outline of the proofs is 
given in the bulk of the paper. Some technical points are explained in more 
detail in the appendices. 

2. THE INFINITE DISSIPATION LIMIT: p = l  

For p = 1 the system writes 

dx (xz t ) ( 1 - x 2 - y 2 ) + 2 y ( y - - ~ )  
du 

dZ=z2(1 _ x 2 - y  2) 
du 

Since it is invariant under the transformation of # and y into - #  and - y  
we shall assume/~ i> 0. 

Three manifolds are left invariant by the flow: the semi-infinite cylin- 
der x2+ y2= l, 2/> 0; the plane y = #(z/2) and the infinite energy plane 
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z = 0. These three manifolds enclose for/~ > 0 an invariant compact set K 
(see Fig. 1). We shall now study the fixed points of the flow in this 
invariant volume (Section 2.1) and the restrictions of the flow on the 
invariant manifolds z = 0 (Section 2.2) and y = #(z/2) (Section 2) for/~ > 0. 

2.1. The Fixed Points 

The invariant manifolds x 2-Fy 2 =  1 and y=/~(z/2) intersect along a 
half-ellipse E of degenerate fixed points. All of them are neutral along E. 
Let (xc, Yc, zc) be the coordinates of any such fixed point. 

, . . , = , v  . . . . . . .  .~ 

, ,"  , *  
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, / 
d .- -" / .  

/"  :. 
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Y Z : O  

K 
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Fig. 1. Phase space of the system with the invariant manifolds for ~=O:y=#(z/2), 
x2+ y2= t, z---0 and the half-ellipse of fixed points E. One fixed point is depicted together 
with its stable and unstable manifolds. 
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(i) Any fixed point with x c > 0  and z c < l / 2 [ 1  "q-(/,//4)2] 1/2 is linearly 
unstable (see Section 2.3 and Fig. 3 below). 
(a) Its stable manifold is the arc of circle x 2 + y2 = 1, z = zc, y > O 

connecting it with the fixed point ( - x c ,  Yc, zc) (see Fig. 1). 
(b) Its unstable manifold is a curve, lying in the plane y = #(z/2) 

which connects it with a fixed point (x'c, Y'c,Z'c), 
z'c> 1/211 + (#/4)2] 1/2 (see Fig. 1 and Fig. 3 below). 

(ii) The fixed points with x~>0  and z~> 1/3[1+(~t/6)2] 1/2 have two- 
dimensional stable manifolds (see Fig. 3 below) 

(iii) Any fixed point with xc < 0 is unstable. 
(a) Its unstable manifold is the arc of circle x Z + y 2 = l ,  

z = z c ,  y > 0  
(b) Its stable manifold lies in the plane y=l~(z /2 )  (see Fig. 3 

below). 

An other fixed point of center type (0, 1/x/-~, 0) lies in the invariant 
plane z = 0 (see Section 2.2 and Fig. 2 below). 

2.2. The Flow on the Invariant Plane z = O  

For z = 0 the system writes 

dx 
- - =  - l + x 2 + 3 y  2 
du 

- - =  - 2 x y  
du 

We study the flow in the region y I> 0. All orbits are cycles except the half 
circle x e + y2 = 1 and the line y = 0 which are invariant manifolds for the 
heteroclinic fixed points (_+ 1, 0) (see Fig. 2). (0, l /x /3  ) is a center fixed 
point. 

2.3, The Flow on the Invariant  Surface y =  p (z /2 )  

On y -= #(z/2) the system writes 

dx 
--~u = ( x z -  1)(1 - x  2 -  y2) 

dz z2(1 x 2 _ y 2 )  
du 
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Fig. 2. Flow on the invariant manifold z = 0, The two heteroclinic fixed points and the cen- 
ter fixed points are depicted. 

Therefore z increases on every trajectory. Those trajectories are stable or 
unstable manifolds of fixed points (see Section 2.2). Their equation x(z) is 

where Zo is the z coordinate of the point where the curve reaches the half 
ellipse E for x > 0. For 0 < # < i some typical trajectories are depicted in 
Fig. 3. 

3. THE STRONG DISSIPATION REGIME 

We now study the system for 0 < ~ 1. We show the existence of a 
compact set (Section 3.t) and a saddle-focus fixed point (Section 3.2). Then 
we study by pertubation the stable and unstable manifolds of this point. 

3,1. The Compact Invariant Set 

For e > 0, y = tt(z/2) is no longer an invariant manifold. However, the 
vector field is transverse to this plane and points toward low values of z. 
Therefore, if { g~, u e N} denotes the flow, Ko~ = n~ > 0 g,(K) is a nonempty 
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Fig. 3. Flow on the invariant manifold y = #(z/2) for z = 0. On the ellipse E, the continuous 
line denotes the fixed points which have dimension 1 stable manifolds, the dotted line those 
with dimension 2 stable manifolds. Some typical trajectories are shown together with some 
important points: A has coordinates (0,2/#); B, {(1/2)[-(1 + # ) v z  _ (1 - g)l/?, 
(1/#)[(1 + 11) 1/z + (i - #)a/2] }; C, [1/(1 + #2/4)1/2, 1/2(1 + #2/4)1/2]. 

compac t  connected  invar ian t  set enclosed in the invar ian t  set K we con- 
sidered previous ly  (see Sect ion 2). W e  are interested in the dynamics  of the 
flow in K ~ .  

3.2.  T h e  S a d d l e  Focus F ixed P o i n t  

F o r  e > 0 the flow has four fixed points.  The three fixed points  in the 
plane z = 0 previously  defined and a fixed po in t  P~ loca ted  inside K ~ .  Since 
y = #(z/2)  is no longer  invar iant  the ellipse of degenerate  fixed poin ts  has 
vanished.  
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P~ has coordinates 

1 #(1 + e)~/2 (1 +e )  1/2 
0~(1 -~ ~)1/2' ~(2-- e) ' ~ ' 

#2(1 
where ~ =  1+  (-}---7~ J 

For # < #o small enough, the eigenvalues of the linearized flow in 
neighborhood of P, write for E small enough: 

the 

7 20~ ~ 4 = - +~--~ (# - 8 / ~ 2 + 4 8 ) +  O(e 2) 

2) + i  

where 

Since 7 < 0 and ~ ( f l + ) >  0, P~ is a saddle focus fixed point. Notice that 
- 7  > ~(fl+),  a condition required for the use of Shilnikov theorem. (6,7~ 

Notice that for higher value of #(#,-~2), P~ becomes stable through a 
Hopf bifurcation. 

When e goes to 0, P~ moves to the boundary fixed point 
P0(1/a0, #/2~o, 1/~o) which belongs to the ellipse E. Therefore it is relevant 
to study the stable and unstable manifolds of P~ by pertubation. 

3.3. The Stable Manifold 

For e = 0 the fixed point Po has for stable manifold the arc of circle F~) 
(x 2 + y 2 =  1, z =  1/~o) which connects it with the fixed point 
P ; ( - l / e 0 ,  #/2Co, 1/ao). This latter fixed point's stable manifold f~  lies in 
the plane y = #(z/2) (see Fig. 4). Its equation writes 

For ~ > 0 small enough, the upper branch F~ of the stable manifold of 
P~ remains close to the curve F 0 = F'ow Fd in the domain z > 1/(2 + ~)1/2 
(see Fig. 4). To prove that result we proceed in four steps: 
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Fig. 4. Pertubation of the upper branch of the stable manifold of P~. The continuous curve 
is the unperturbed manifold F0, the dotted line is the perturbed manifold F~, 

(i) Step One. (a) By standard perturbation method we prove that 
for x remaining at a finite distance of -1/~0 we have a converging per- 
tubation expansion for the equations y(x), z(x) of F~, for # small enough 
and e < %(/~), which writes at first order in e: 

y = ( 1  --X2) 1/2-} 8/~/Zx2 
4c(~(1  - x 2)1/2 

( 1 +  x'~'/2 1 
~o \t----L--~J :(o+X--(/~/2)( 1 --X2) 1/2 ]cO(~ 

z = - - q  + ~0 2r162 ~ + x - ( # / 2 ) ( l ~ x - ~ J j  3r 

x is obviously the right geometric parameter of the curve until we reach the 
neighborhood of P~ since the unperturbed trajectory is the arc of circle 
y =  (1 --X2) 1/2. 

(b) When x approches -1/7o the pertubation expansion blows up 
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owing to terms of the form ~(x)/[eo+X-(/~/2)(1-x2)~/2] ~ in the expan- 
sion. It comes from x being no longer a convenient geometric parameter 
(see Fig. 4). However we can prove that for x > -1/7o(1 - e  I/3) F,  remains 
in a E ~/3 neighbourhood of Fo. 

(ii) Steps Two and Three. To proceed further and study /-~ in a 
neighborhood of P ;  we must adopt y as new geometric parameter of F,. 
We study F~ in two steps owing to the singular behavior at P ;  where F 0 is 
not differentiable (see Fig. 5a and 5b). 

(a) F o r  

]2 < y < ~ o  [ I  4• 1/3] 
+7-J 

F;  is an arc of a circle, F~ crosses the plane 

/~ F 4e113l 

at a point 

1 
x =  - - - ( 1  - / ~ e  ~/3) 

~0 

1 
z = - -  ( 1 - / 3 ' e l / 3  ) 

~0 

where 

where 

4 
/ 3=  1 + ~ +  O [d/3 +~L 6] 

/~, = ]22 ~_ O[~1/3 +]24]  

It remains in a ~/3 neighborhood of F ;  for y > ]2/2eo and crosses the plane 
y = #/2% at a point 

1 
x =  - - -  [1 -?e,  ~/3] where 

~0 

1 
z = - -  [1 - ~/'d/3 ] 

~0 
where 

}' = 22/3 + O [ e  I/3 + / t  2] 

~' = 21/3 + O[e, 1/3 + f22] 

The proof is easy. It is given in Appendix 2 and relies on the behavior of 
the unperturbed flow near P;.  

(b) For 

J_L (1 - ~/3) < y < ~  
2C~o 2:~ o 



770  M e u n i e r  

) 

"~176 i ~176176176 o i 

, -  4/<Xo ( 

..... J "l'r i f"~ ~% 

) 
l'/z~, I'SVo i ('~" 4 ~"~//"Q 1 

/ Y 

, z  Fo~, ~ ~,f ~,<j ~.f 

,m Io(o / 

4t4o C"- ~'~'") y 

. , 4 .  ~., .o,~ ................ 

.S ~ 

# 
r. 

~ Y  

Fig. 5. Successive steps in the study of F, near P ;  depicted for variables x (Figure 5a) and z 
(Figure 5b). 
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We prove in a similar way that F~ remains in an 51/3 neighborhood of Io  
the equations of which write 

~ . .  2y 
z t y ) = - -  # 

(iv) Step Four. In a final step we use standard perturbation 
methods to prove that F~ remains in a e ~/3 neighborhood of F~ until it 
crosses the plane z = 1/(2 + c~) ~/2. (where x(z) = 0). In that last step we use 
z as the convenient geometric parameter (see Fig. 4). 

3.4. The Unstable Manifold 

For e = 0, the plane y = l~t(z/2) is the center unstable manifold of the 
fixed point Po. We may study by perturbation the unstable manifold of P~ 
and examine its behavior in a neighborhood of P;.  

First of all, we show that the unstable manifold is an analytic manifold 
defined on the rectangle: 

1 
.(1 + e)~/2 

1 (1 + e)1/2 

1 
#~<x~<e( t .~_ e)I/2 ~'~g 

# < ~ z < ~ ( 1 + e ) l / 2 + # ~  

For # ~< r small enough and e small enough, its equation writes 

Z 
y-#-~=gt~,~(x,z) where 0~< ~ u ~ < e ~  

' 2 

(see Appendix 2) 
To study the unstable manifold of P, in a neighborhood of P;  we 

proceed as follows: 
For e=0,  the stable manifold of P;  originates from the point 

Q [1/(1 + ~2/36)a/2, (#/6)/(1 +/g2/36) 1/2, (1/3)/(t + tg2/36) 1/2] (see Fig. 6), 
We may study by pertubation for e small enough the curves lying on 

the unstable manifold and originating in a neighborhood of Q until they 
reach a neighborhood of P6. 

More precisely we show that the trajectory xa(z), y~(z) on the unstable 
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Q 

a 

Fig. 6. Perturbative study of curves originating near Q and reaching E near P;. The dotted 
lines correspond to the unstable manifols of P~ and the perturbed trajectory originating on 
that manifold in Q~. 

manifold of P~ originating f rom the points  Q a ( 1 - # ,  ~ , ~ ( 1 - / ~ , � 8 9  
+ (#/2)( 1 + a/l), �89 + akt), 0 ~< a ~< 1 remain close to the corresponding curves 
2~(z), f~(z)  on y = g(z/2) originating f rom the point  Qa(1 - # ,  (#/2)(~ + a/~), 

+ a#) (see Fig. 6). 
We have then for �89 

[xo(z) - )?a(z)L ~< N~ 2/3 

[ya(z) - y~(z)[ <~ Ne z/3 for some positive number  N 

where za is the z coordinates  of the point  Ro where Xa(Z), ya(z) reaches the 
ellipse E for negative values of  x (see Fig. 6). 

Tha t  result requires lengthy but  s t ra ightforward calculations. 
In a second step we study the per turbed trajectories after their crossing 

of the surface z = z ~ - ~  ~/3. For  this purpose  we use the coordinates  
s = 1 - x 2 - y2, t = y - #(z/2), z. The crossing of z = z a - e ~/3 occurs at some 
point  s = &  1/3, t=~'~ 1/3 and we obtain  for te[6'~ 2/3, 17] where t/ is some 
small positive number :  

0 <~ s(t) <<. Oe ~/3, 0 some positive real number  

za-  3el/3 <~ z(t) <~ za { l + el/31og(e) I (-~-~-~--4 ) l/2- ~---~]} 
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Therefore any perturbed curve corresponding to the initial point Qa 
remains in a el/3 neighborhood of the unperturbed curve x 2 + y2 = 1, z = za 
in the region near P;.  

4. CONCLUSION 

We have thus proved that for # < / t  o small enough and ~ <%( /0  the 
dimension one stable and dimension two unstable manifolds of the saddle 
focus fixed point A are defined and close together in a neighborhood of the 
point P;  (see Fig. 7). Therefore we may expect an homoclinic tangency to 
occur for certain values of the parameters. Then the stable manifold will be 
contained in the unstable one, 

tn such cases the assumptions of Shilnikov theorem (6'7~ will be satisfied 
and in every neighborhood of the homoclinic orbit F~,~ there will exist a 
countable set of unstable periodic orbits of saddle type and a subsystem of 
trajectories in one-to-one correspondence with a shift with an infinite num- 
ber of symbols. We know too that for nearby values of the parameters a 
finite number of these horseshoes do persist (7,s) although the homoclinic 
orbit has disappeared. 

Such a situation might even give rise to a spiral type strange 
attractor ~ and we think that the chaos which has been numerically obser- 
ved for high value of dissipation and small mismatch could possibly be 
explained in such terms. 

..~ "***. 
Y**" 

"Po 
Fig. 7. Stable (dotted line) and unstable manifolds of P~ for/~ and e 'small enough. 

822/4o/5-6-! I 
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APPENDIX 1: THE ENERGY-CONSERVING CASE 

If we introduce the following set of variables: 

2+a~ 
E =  a s 

2 

B =  au 
2 2 

as + au 

total energy 

which describes the distribution of energy 

between the two waves 

relative phase 

together with the reseated time 

u= [M(t)] t/z dt 

we obtain 

d E = 2 ~ E  [y.B+7~(I-B)] 
du 

dB - 2  ~ (1 - B) sin q~ + 2B(t - B ) ( 7 . -  ?~) 

d~b 3 B -  i cos q~_ & 

When ),, = 7~, = 0 the energy is conserved and the system possesses on 
any constant energy surface (E > 0) a Hamilton function: 

~B 
H =  - 2  ,v/B (1 - B) cos ~b-- x/- ~ 

with conjugate variables B and ~b: 

dB 8H 

d~ ~H 

du 8B 
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The situation 0 <  ?o~ 1, 0 < - y ~  1 may be studied by pertubation of 
the integrable limit case. 

APPENDIX 2 

We study /'~ for #/2~o<~y<~(l~/2%)(l+4el/3/l~ ) and we set 
v = ( y -  #/2~o) e.-i/3 My) = - ( 1  - y 2 ) m ,  Y(v) = i /% are the equations of 
r; .  

The equations for F~ write 

x(v) = - (1  - y2)1/2 + e,/3X 

z(v) = 1 +  d/ Z 
o~ o 

where X and Z satisfy for v ~ (0, 2/p%) 

dX 
dv 

/ •2/3 \ 

dZ (e + ~i/3Z)Z ~i +""e + 22~X+ el/3X 2) 

together with the initial conditions 

2 

0r o 

where /7= (fl - 1)/% + O(e 1/~) 
We have to prove that the solutions exist for v e [0, 2//~%]. Actually it 

is sufficient to prove that for the lowest-order system 

dX 4X 
dv 

dv t~X/~ + 2v - I~Z 

a solution with the same initial conditions exists for v ~ [0, 2/#~0], 
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If we set 

we have 

w = 2#aoV 

S =  g_~2 X 
a0 

T= #2aoZ 

dS 2S 

dw w + S - T '  
w e [-0, 4] 

dT S 

dw w + S -  T' 

with initial conditions: S(4) = p2~/e o > 0, T(4) = _#2/1, < 0. 
Since d(S + 2 T)/dw = 0, we have, setting k =/~2 [~/c% - 2/1'], S + 2 T = 

k < 0 on the trajectory and 

dS - 2S 

dw w + 3 S / 2 - k / 2  

which has a positive decreasing solution on [0, 4] for the given initial con- 
dition. 

Since T =  k / 2 -  S/2, T also exists on [0, 4] for the initial condition 
T(4) -- _#2/1,. T is a negative increasing function on [0, 4]. 

We may estimate S(0) and T(0): If we set 

we have 

dS 

so that 

w = x / -  ~ 2 t-~ where =/~ 4+---~---) 

Therefore for/~ and e small enough 

S(0)  = 22/3/./2 q- O(g 1/3 q-/24) 

T(0) = .21 /3~  2 -ff O(81/3 -}- #2) 
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In this way we obtain estimates tbr the perturbed trajectory F~ 

1 
x = - - -  (I - ~e~/3) 

So 

1 
z = - -  (1 - ?'e ~/3) 

So 

where 

where 

3) = 22/3 + O(el/3 .1_ //2) 

~, = 21/3 + O(,9,1/3 _1_//2) 

which enable us to proceed further with the study of the perturbed stable 
manifold F.. 

APPENDIX 3 

The proof of the existence of the unstable manifold relies on the use of 
the Picard-Banach theorem in an appropriate functional space. To avoid 
problems due to the behavior of the flow far from the fixed point and to 
the existence of the invariant manifolds: x 2 + y2 = 1 and z = 0, we consider 
a new flow which coincides with the previous one in a box containing the 
fixed point: 

1 1 
s(1 ..]_g)l/2 ~'--<x'--<s( 1 +e)~/2+//e 

//(1 + e) I/2 ~ #(1 + e) I/2 
//e ~ y +//e 

s(2 -- e) s(2 -- e,) 

1 1 (1 + e)1/2 (1 + e) 1/2 
3(1 +//2/36)1/2 (1 +//2/4)1/2-} o~ / / ~ . r ~ - - s  t-//g 

That new flow is defined in such a way as to possess no invariant manifold 
and to have vanishing nonlinear terms far from the fixed point. 

We build it as follows: P~ has coordinates 

+ e) 1/2' s ( 2 -  e) 

we introduce new variables: 

1 
X = x -  

s(1 + e) 1/2 

z # e ( l + e )  1/2 
Y=  y - / /  

2s(2 g) 

(1 + e) t/2 
Z = z  

s 
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The system is written then with inverted time v = -u :  

< -  E (2 dv ~(l+e)~/2 8 + 2  1 1 2# (1+e )  */2 - 7 5 + 2  Y 

t g 

c~(1 + 8) 3/2 

_ _ _  ( ) dY #e(1+8)  1/2 + 1 1 - 7  5 Y 
dv c~(2-8) 1 75 X-+ ~(l+e)a/2 

/~8 ( 2 - 8 )  
~ ( 2 _ 8 ) ( 1 + ~ ) m  1+--~7-2 Z+ Y'(X, KZ,  8,#) 

dZ 2#(1 + e) 3/2 #2(1 -}- 8) 3/2 
2 ( l + e ) m X - t  Y-~ Z+Z(X,  Y,Z, #) 

dv or' c d ( 2 -  8) ~-~2 ~ 7j 8, 

X, Y, Z are nonlinear polynomial terms depending on the parameters #, e. 
We define a new flow on N3 by 

dX 
- -  = linear terms + C(X, K Z) 2 
dv 

d r  1 - 7  
d---7 = (1 + 8),/2 2 Y 

+ C(X, r,  Z) L ~(2 - 8) 1 + 75 x 

2 - e ~_] 
x (1 +-~-j2 ) Z +  

dZ 
- -  = linear terms + C(X, Y, Z) 2 
dv 

c~(2 -8")(1 + ~)1/2 

where C is a cutoff function. 
We shall now prove by using an appropriate function C that the fixed 

point has a C 1 stable (remember that time is inverted) manifold 
Y(X, Z, e, #) satisfying sup I YI < #8. 

We choose C(X, Y, Z)=f(X)  g( Y) h(Z) where: 

(i) f is a positive C ~ function with compact support [-7~/8', 7/~8/e'], 
equal to 1 on [ - /~ ,  #8], smaller than 1 outside that interval, which 
satisfies for # < #o(8') and e < eo(#): - 2 d  ~< X(df/dx) +f~<  1 where e' 
is some given small real number, 
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(ii) g is a positive C ~ function with compact support which is equal to 1 
on I - e # ,  e#] and smaller than 1 outside that interval. 

(iii) h is a positive Coo function with compact support, equal to 1 on 
[1/3(t  +/,2/36) t / 2 -  1/(1 + / . t 2 /4 )m-# ,  #el  and smaller than 1 out- 
side that interval, which satisfies e ' > Z h >  - 2 ( i + d )  and 
4(t +d)>~Z2h~>0 for # < p o ( d )  and e. < eo(/~). 

Then the flow is defined on ~3 and for #o(e') small enough the invariant 
manifolds x2+  y 2 =  1 and z = 0 no longer exist. 

Let Y(X, Z) be any C o bounded function defined on ~2 and satisfying 
sup I YI ~< #8/4, Y(0, 0) = 0. 
We define X(v; Xo, Zo, Y) and Z(v; Xo, Zo, Y) as the solutions of 

dX 1 I ( _~_~)127,_ (2_g) (2__~+~)y(X,Z , -~v = ~ ( l + e )  m ~ + 2  1 1 2 # ( l + e )  I/2 1 e 

1 e 

e(1 +e )  3/a 

+ f(X) g( Y(X, Z)) h(Z) X(X, Y(X, Z), Z, e, #) 
dZ 2 ( l + g )  t/2 2#(1+~)3/2 Y(X,Z)-4 #2(1+g)3/2 
d.~ = ~ 3 X-] g3(2_8 ) c~3(2 _ ~) 

+ f(X) g( Y(X, Z)) h(Z) Z(X, Y(X, Z), Z, g, I.z) 

Z 

with initial conditions X(0)=  X0, Z ( 0 ) =  Z0 
Y(X, Z) is a center stable manifold of (0, 0, 0) if and only if it is a 

solution of 

Y(Xo, Zo) = K[X(v; Xo, Zo, Y), Y[X(v; Xo, Zo, Y), 

• Z(v; Xo, Zo, Y), Z(v; -go, Zo, Y) 

[ 2- ct~ 1 *exp ~X(1 + g)t/2 V dv 

] ~ ( 2 -  e) 1. + X 

2 - g  
e(2 -- e)(1 + e) 1/2 

for any Xo, Zo. 
We must then apply the Picard-Banach theorem to the corresponding 
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map T defined on the space of C o functions satisfying Y(0, 0 )=  0 and 
sup i YI ~< #e/4 which is a Banach space for the C O topology. 

(i) One easily verifies that T maps this space into itself. 
(ii) To prove that T is contracting one proceeds as follows: We set for 

any two functions Y and I(' 

5X(Xo, Zo, II, Y')= X(Xo, Zo, Y ' ) -  X(Xo, Zo, Y) 

&Z(Xo, Zo, Y, Y') = Z(Xo, Zo, Y') - Z(Xo, Zo, Y) 

5 Y(X, Z)= Y'(X, Z ) -  Y(X, Z) 

Owing to the choice of the cutoff function C, one has for j~o(a') small 
enough 

d&X ~<4( 1 +d)I6EI  + e' laZ[ +# ll&YllcO 
dv " 

dan ~<2(1 + 2e')t6Xl +e' 16Zl §  llaYltc~ 
dv 

Therefore M =  [(6X)2+ (6Z)2] 1/2 satisfies for e' given small enough 
the differential inequality: 

M 2 
dMZ .v/-~# {taY{IcOT1/i§ [8 § (13) '/2] 7b-v~ <2 

with the condition M(0)= 0 
Let N(v) be the C ~ function solution of 

~ = ~ [ 8  + (t3) 1/2] N +  w/-2 # H6Yl]co 

with initial conditions N(0 )=k#  115YHco k any given positive real number 

and for all time M(v)< N(v) 
Therefore 

,5 F 6 1 e(V/6 )[ 8 + (13 )l/2] M(v) ~ # 116 YI] co k 18  7(555'J2A 

a bound which does not depend on Xo and Z o. 
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Using that result one may prove after lengthy but straightforward 
calculations that 

• 
exp l ~(1 + e) 1/2 

with A and B some positive real numbers. 
That inequality ensures contraction for #0(e) and e(#) small enough. 
We have thus found a unique C o invariant manifold, close to 

y=#(z/2) since IIYIIc0~e#/4, which is the center stable manifold of the 
fixed point located at the origin for the modified system in variables 
~; Y,Z. 

Moreover T maps the set of C ~ functions Y satisfying Y(O, O)= O, 
ItYl[co<~,ur./4, tidY/dXtlco~k'~e, lidITdZIico~k'#e into itself for any 
positive real number k' large enough: 

Therefore the fixed point lies in the C o closure of C ~ functions with 
derivatives bounded by k'It~, and one may prove that it is not only 
uniformly Lipschitz but even CI. {l~ 

That unique C* invariant manifold coincides locally with the unstable 
manifold of the origin. Therefore it is nothing but the unstable manifold of 
the origin for the modified system in variables .g, Y, Z. 

Reversing to the initial system (with usual time) we have thus proven 
that the fixed point P~ has an unstable manifold y=t4z/2)+ g*~,~(x, z) 
defined on the rectangle: 

1 
:r + g)m 

1 1 (1 + e) 1/2 
3(1+t,2/36) 1/2 (1 +#2/4)1/2 + 

1 
#~<x~<cr ..~_ g) 1 - - ~ / 2  "~ / ~ 

(1 + e) 1/2 
# ~ < Z ~ < - -  t-#e 

o~ 

with T~,, a C 1 function satisfying 

0 ~< 7'~,~(x, z) ~< 2 

Actually one could even prove that owing to the polynomial nature of the 
vector field in those coordinates, 7t~,~ is an analytic function. (u~ 
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